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Summary. Proving the correctness of fault-tolerant algorithms is a tedious en-
deavor. Not only are the algorithms themselves complex, but nondeterministic fault
transitions due to the environment compound the complexity. We demonstrate how
to systematically decompose proofs of correctness. We first define a relation between
the execution of an algorithm in a fault-generating environment and a fault-free one.
Proofs can then be decomposed as follows. First, an algorithm is shown to satisfy this
relation. Second, proving that the algorithm satisfies its requirements necessitates
reasoning about the execution of the algorithm in a fault-free environment only;
faulty behavior can be ignored. This technique systematizes and simplifies proofs
of fault-tolerant algorithms. The verification of the Oral Messages(1) algorithm is
given as a simple illustrative example.

1 Introduction

Fault-tolerant embedded systems are rapidly being integrated into the digital con-
trol systems of automotive, aircraft, and other such systems [11, 12, 27]. In such
contexts, these systems are safety-critical (i.e., lives may be lost if they fail), so it is
imperative that they operate correctly. Thus, the algorithms these systems employ
must be correct. This is often difficult to achieve given that fault-tolerant algorithms
can be notoriously tedious and complex. Not only must a fault-tolerant algorithm
perform an intended function, but it must mask faults.2 Furthermore, fault-tolerant
algorithms often operate in a distributed environment in which issues such as com-
munication and synchrony must be addressed.

Proofs purporting to demonstrate the correctness of fault-tolerant algorithms are
likewise complex. Hand proofs – even those appearing in peer-reviewed journals – of

?Submitted to Formal Techniques in Fault-Tolerant and Real-Time Systems
(FTRTFT), 2004.

2In fact, the fault-masking itself has been found to be the principle sources of
errors in some systems [25].
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the correctness of relatively simple fault-tolerant algorithms have been flawed [17].
Formal verification efforts, although arguably less error-prone, are arduous tasks due
to these complexity issues. For example, see [8, 15, 17, 23].

The formal methods and fault-tolerance communities are consequently motivated
to systematize and simplify these proof-of-correctness efforts [26, 14]. We pursue this
goal by presenting a general method to decompose these proofs. This decomposi-
tion rests on the formal definition of fault-tolerant correctness in Sect. 5.1. The
essential idea is this: first, we show that a fault-tolerant algorithm executing in a
fault-generating environment is equivalent, in a certain sense, to its execution in a
fault-free environment. If this relation holds, we can prove properties of the algo-
rithm hold for executions in fault-generating environments based on a model of its
execution in a fault-free environment.

Decomposing the verification effort into these two steps reduces the complexity
of the proof. A primary complication in reasoning about fault-tolerant algorithms is
that faults introduce nondeterminism into the algorithm execution. Our goal is to
reduce this complication by shifting much of the proof burden to reasoning about
fault-tolerant algorithms in fault-free environments. With the method described,
faults need to be explicitly reasoned about only once. Thereafter, in proofs demon-
strating an algorithm satisfies its requirements, they can be ignored. Finally, decom-
posed proofs are more systematic – proofs of correctness for various algorithms can
be accomplished using the same proof technique.

2 Organization

In Sect. 3, we introduce problem constraints and present basic definitions. We then
examine some related work in Sect. 4. Section 5 defines the central concept of fault-
tolerant correctness, and it explains how to model the execution of an algorithm
in fault-generating and fault-free environments. Section 6 applies the techniques
described to the familiar Oral Messages(1) algorithm [13, 21]. Section 7 contains
concluding remarks and proposed future work.

3 Constraints and Definitions

We begin by constraining the problem. We are interested in distributed deterministic
fault-tolerant algorithms. Our model of a distributed system follows those in [24, 18].
Notably, we assume each process has a unique and globally-known process identifier.
In the nomenclature of [18], we consider fault-tolerant algorithms in synchronous
systems3 that handle process failures (however, we explain how to model link failures
as a kind of process failure in Sect. 6). We consider Byzantine faults [13, 7], the most
severe and general kind of fault, in this initial investigation. Nevertheless, these
results are extensible to a more refined fault model.

Our basic definitions are as follows.

3The results herein do not depend on synchrony, but basic fault-tolerance e.g.,
reaching agreement, is often impossible in an asynchronous setting [18].
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Definition 1 (Design Specification). The design specification specifies how an
algorithm behaves, at some level of abstraction.

State machines [16], petri nets [22], and recursive functions [2] (the emphasized
model in this paper) are some common frameworks for expressing an algorithm’s
design specification.

Definition 2 (Requirement). A requirement is a post-condition that should hold
after the algorithm terminates, provided certain pre-conditions hold. For distributed
algorithms, a requirement is a relation between tuples of non-faulty process inputs
and outputs. (If a requirement needs no pre-conditions to hold, then it simply relates
all possible inputs to the prescribed outputs of non-faulty processes.) More formally,
let I and O be n-tuples of inputs and outputs, respectively. In a tuple, we denote the
value at index j with a subscript, so vj ∈ I denotes the input of process j. Denote
requirement R holding of these tuples by R(I, O).

We stipulate that requirements are preserved under requirement restriction.

Definition 3 (Requirement Restriction). If R(I, O), N is a nonempty subset
of the indicies of these tuples, and I ′ and O′ are tuples created from I and O,
respectively, by taking each vj such that j ∈ N , then R(I ′, O′).

This is a common property for a requirement to have; for example, agreement and
validity [18] conditions (instances of which are given in Sect. 6.1) satisfy requirement
restriction.

Definition 4 (Requirements Specification). A requirements specification pro-
vides the set of requirements that an algorithm must satisfy.

Definition 5 (Correctness). Proving an algorithm correct requires demonstrating
that its design specification satisfies each requirement in the requirements specifica-
tion.

Design specifications in general make implicit assumptions about the environ-
ment in which the specified algorithm executes. For example, inherent in design spec-
ifications for fault-intolerant algorithms is the assumption that the environment does
not generate faults in actions like sending/receiving messages and reading/writing
data. However, because fault-tolerant algorithms are meant to mask such faults
generated by the environment, their specifications must not a priori assume the
environment is completely fault-free. We therefore distinguish design specifications
that make this assumption from those that do not.

Definition 6 (Fault-Free Specification). The fault-free specification of a fault-
tolerant algorithm is the design specification in which the environment is assumed
to be fault-free.

Definition 7 (Fault-Tolerant Specification). The fault-tolerant specification is
the design specification in which the environment is allowed to be fault-generating.

Of course, no fault-tolerant algorithm tolerates all possible faults generated by
the environment; a maximum fault assumption constrains the faults tolerated.4

4We do not consider faults arising from design errors.
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Definition 8 (Maximum Fault Assumption (MFA)). A specification of the
number of and kinds of faults that an algorithm is designed to tolerate.

In this investigation, the only kind of faults we consider are Byzantine faults, so
the MFA will simply restrict their number. When verifying the correctness of the
algorithm, we consider only those fault-generating environments satisfying the MFA.

4 Related Work

Proofs of correctness for fault-tolerant algorithms have generally proceeded by prov-
ing that an algorithm’s fault-tolerant specification satisfies its requirements specifi-
cation directly. Nevertheless, we know of a few endeavors related to the technique
we present.

In [31], Weber uses a state machine approach to formally define fault-tolerance
and to prove the correctness of fault-tolerant systems. He states that a system is
fault-tolerant “if its behavior in the presence of faults is the same as it would have
been in the absence of faults,” [31]. Unfortunately, his definition applies only to
systems that completely mask faults (the worked example he gives is of a storage
management system with a redundant disk). Most fault-tolerant systems (or algo-
rithms) do not completely mask faults (these issues are discussed in Sect. 5.1). In
this respect, the work here can be seen as a significant generalization of Weber’s
approach.

In the Reliable Computing Platform (RCP) project at the NASA Langley Re-
search Center, faults are masked completely, in accordance with Weber’s definition
of fault-tolerance. The goal of the RCP project is to formally specify and verify
a synchronized fault-tolerant operating system [30]. The proof method employed
in the RCP project is to develop a hierarchy of specification abstractions for the
RCP and then to show a satisfaction relation holds between the various levels. The
top level is the Uniprocessor System layer (US) specifying the behavior of RCP as
if it were running on a single fault-free processor. The next highest specification
level is the Replicated Synchronous layer (RS) in which the system is specified as
a synchronous fault-tolerant system running on replicated processors with majority
voting.

Others have made similar distinctions between behavior and fault-tolerance.
In [1], a theory is proposed demonstrating that fault-tolerance is the addition of
certain fault detectors and correctors to a fault-intolerant algorithm. The fault-
tolerant specification of an algorithm is essentially a particular composition of the
fault-generating environment, the fault-intolerant algorithm, and the detectors and
correctors. Chandy and Misera take a similar compositional approach using their
UNITY programming language to specify and verify fault-tolerant algorithms [5].

Finally, in [14], Lamport argues that reasoning compositionally about distributed
systems is counterproductive. The sort of composition described therein is the com-
position of parallel components in the system.

Any proof in mathematics is compositional – a hierarchical decomposition
of the desired result into simpler subgoals. . . . Mathematics provides more
general and more powerful ways of decomposing a proof than just writing
a specification as the parallel composition of separate components [14].
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We do not propose to decompose proofs with respect to parallel computation. His
critique is orthogonal to the sort of proof decomposition we propose; in fact, these
remarks seem to support the sort of decomposition we propose, as it is a “mathe-
matical decomposition.”

5 Decomposing Proofs of Correctness

We describe how to decompose the specifications of correctness of fault-tolerant al-
gorithms in this section. In Sect. 5.1, we first define a relation between fault-tolerant
algorithms executing in fault-generating and fault-free environments, respectively.
In Sect. 5.2, we demonstrate how to efficiently model the execution of fault-tolerant
algorithms as the evaluation of recursive functions to facilitate proving the relation
holds. The results in this section are applied in Sect. 6.

5.1 Defining a Fault-Tolerance Relation

Fault-tolerance is canonically defined as correct behavior in the presence of (a spec-
ified kind and number of) faults [6, 28]. It would be convenient if correct behavior
simply meant that faults are masked or corrected, and the output of the algorithm
is the same regardless of whether faults occur. Then an algorithm would be fault-
tolerant if for given inputs, its output in a fault-generating environment is equivalent
to its output in a fault-free environment.

Unfortunately, this level of fault-tolerance is often impossible to achieve. There-
fore, correct behavior is often defined in terms of agreement, validity, and termi-
nation conditions [18] (the last of which is usually trivial). For typical algorithms
satisfying these requirements, it is easy to see that while agreement can be reached
in the presence of faults, processes may reach agreement on different values in fault-
generating and fault-free environments for the same inputs (we leave this as an
exercise).

To prove a fault-tolerant algorithm satisfies agreement, validity, or any other
requirement usually requires reasoning about the execution of the algorithm in the
face of faults that nondeterministically alter its execution. Such proofs can be noto-
riously complex. This is the case even when requirements do not essentially relate to
the fault-tolerance capabilities of the algorithm. What’s more, such reasoning about
fault transitions must be undertaken for each requirement to be satisfied.

We are therefore motivated to reduce this complexity by decomposing the proof
process. This decomposition hinges on Def. 9, stipulating a relation between an
algorithm executing in a fault-generating environment and a fault-free environment.
Proofs can then be decomposed as follows. First, an algorithm is shown to satisfy this
relation. Second, if the relation is satisfied, proving that the algorithm satisfies its
requirements requires reasoning about the execution of the algorithm in a fault-free
environment only; faulty behavior can be ignored.

To define this relation, we begin by noting that the execution of a fault-tolerant
algorithm in a fault-free environment may approximate its execution in a fault-
generating one in the following sense. In a fault-generating environment, suppose
each process has some input. If there is some new assignment of inputs to the faulty
processes (while the non-faulty processes have the same inputs) such that the outputs
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of the non-faulty processes are the same in both environments, the executions in the
different environments are indistinguishable.

In the following definition, let A be a distributed fault-tolerant algorithm, and
MFA its maximum fault assumption. Let ENV fg be any fault-generating environ-
ment satisfying MFA.

Definition 9 (Fault-Tolerant Correctness). Let each process i have input xi,
and let the output of each process i be zi after the execution of A in ENV fg. Let N
be the set of non-faulty processes in ENV fg. Then for each process i, there exists an
input yi such that for all j ∈ N , yj = xj and each process j ∈ N has output zj after
the execution of A in a fault-free environment.

For all processes not in N , yi can be any value that ensures processes in N have the
correct outputs. Likewise, their outputs can be any value. The value yi is uncon-
strained since we assume all faults are Byzantine faults. Under a more refined fault
model, the inputs of these processes would be constrained according to MFA.

The following theorem assures that requirements that hold of the executions of
an algorithm in a fault-free environment imply they hold of executions in a fault-
generating environment, recalling Defs. 2 and 3.

Theorem 1. Let A be a distributed fault-tolerant algorithm that is fault-tolerant
correct. Suppose that for all input-tuples I, the execution of A in a fault-free envi-
ronment generates an output-tuple O such that for requirement R, R(I, O) holds.
Then for all inputs, and all fault-generating environments ENV fg that satisfy the
maximum fault assumption for A, the execution of A in ENV fg also guarantees
R(I ′, O′) to hold, where I ′ and O′ are the respective restrictions to non-faulty pro-
cesses.

Proof. If A is fault-tolerant correct, the output of a non-faulty process after the
execution of A in ENV fg is its output after A executes in a fault-free environment,
where only the inputs to faulty processes differ. Since the inputs and outputs of
non-faulty processes in the two environments are the same, R(I ′, O′) is a restriction
of R(I, O). ut

5.2 The Design Specification

Recursive functions are often preferred when providing high-level behavioral speci-
fications of synchronous fault-tolerant algorithms, such as in [26, 17], and especially
when using theorem provers (e.g., PVS [20] and ACL2 [32]). Our concern here is
to efficiently specify algorithms executing in fault-generating and fault-free environ-
ments as recursive functions.

We model the execution of a fault-tolerant algorithm A in a fault-free environ-
ment first. To model the inputs, we let λi. xi be a function from the set of processes
on which A executes to the input xi of each process i. Since no faults are generated
in a fault-free environment, all steps that depend on the environment are deter-
ministic. We can thus specify A with a recursive function Aff , where “ff” denotes
fault-free.

Let the body of Aff contain functions
→

env
ff

= envff
0 , envff

1 , . . . , envff
m that

model the deterministic transitions of the environment (the functions in
→

env
ff

may
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have differing signatures). The functions
→

env
ff

model the actions that depend on
the environment insofar as a faulty process could disrupt them. For example, these
functions could model the sending of messages over a network or the writing of
messages to a disk. In a fault-free environment, the message to be sent or written
are faithfully sent and written, so these functions will often just be identity maps.
For instance, let STR be a set of bit strings, and write : STR → STR a function
that takes a bit string, and models the action of writing it to disk. The output is
the bit string written to disk. In a fault-free environment, write(str) = str since the
string to be written is exactly the same as the string written.

In providing the fault-tolerant specification of A, we must extend the behavior

allowed by
→

env
ff

so that both intended and unintended behavior are possible. We
formalize this using uninterpreted functions [19].

Definition 10 (Uninterpreted Function). An uninterpreted function f : D → R
has no defining body. For d ∈ D, f(d) ∈ R is an uninterpreted constant.

An uninterpreted function models Byzantine behavior by allowing for all possible
behaviors [26]. The example in Sect. 6 demonstrates this usage. For a more refined
fault model, such functions can be partially-interpreted.

Let the recursive function Aft (“ft” denotes fault-tolerant) be the fault-tolerant
specification of A, such that its body contains only partially interpreted environ-

mental functions
→

env
fg

. As noted, Aff is the fault-free specification of A. The bodies

of Aft and Aff differ only by the terms
→

env
fg

and
→

env
ff
.

To prove Aft(λi. xi) satisfies fault-tolerant correctness, we show that there exists
an input function λi. yi such that Aft(λi. xi) = Aff(λi. yi)

5 and that satisfies the
constraints of Def. 9. Provided this relation holds, we can substitute Aff for Aft in
proofs to show that an algorithm satisfies its requirements in the presence of faults.

6 An Extended Example: OM 1

We verify the fault-tolerant correctness of the Oral Messages(1) algorithm (OM 1) [13,
21, 17], and we use this result to prove it satisfies its requirements, agreement and
validity. OM 1 is a simple and well-known fault-tolerant algorithm used to pass mes-
sages in a distributed network from a fixed single process (called the “general”) in
the network. The OM 1 algorithm proceeds in two rounds of communication with a
computation step at the end of the second round (we assume a synchronous model
of computation where time is abstracted to discrete rounds [18]). The algorithm is
as follows.

Round 0
• The general sends its message to every process in the network.

Round 1
• Each process sends the message it received in Round 0 to every other

process in the network. (If the sender fails-silent and no message was

5For modeling efficiency, we allow Aff and Afg to take axillary inputs, e.g., a
program counter (see Sect. 6 for an example).
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received in round 0, then a dummy value is sent.) Each process com-
putes the majority message of those received in Round 1. If there is no
majority, a special constant (e.g., no maj) is computed.
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6.1 The Requirements Specification and the MFA

The following two properties together are the requirements specification for OM 1:

Definition 11 (OM 1 Agreement). Any two non-faulty processes compute the
same value.

Definition 12 (OM 1 Validity). Assuming the general is non-faulty, each non-
faulty process computes the value sent by the general.

For OM 1 to satisfy these properties, we must constrain the faults it encounters. We
specify the kinds of faults and the maximum number of them in the MFA.

We allow any kind of process fault to occur. A process may stop computing, it
may compute values incorrectly, it may stop sending or receiving messages, or it may
send incorrect messages. We allow processes to exhibit Byzantine behavior [13, 7] as
well; i.e., a process may send different values to different receiving processes. Some
of these behaviors may be the result of faulty channels rather than faulty processes.
We abstract away this difference and say that process j is faulty if either process
j is faulty or a communication channel sending messages from j to other processes
is faulty [24]. This allows us extend the model of process faults to cover link faults,
too. The MFA for the algorithm OM 1 follows.

Definition 13 (MFA for OM 1). There are at least four processes, and no more
than one of them is faulty.

6.2 Specifying OM 1

Here we formally specify the execution of OM 1 in fault-generating and fault-free
environments. The general approach in this section is similar to Rushby’s model of
the same algorithm in [26].

We let the set of messages sent and received by processes be modeled as a set
MSG. I is a set of process indicies, and let variables i, j, k, and l range over I . We
use the variable g ∈ I when we particularly want to denote the general. VAL is a
set of process functions, such that for val ∈ VAL, val : I → MSG takes a process
index i and returns the message of process i. VAL provides a global view of what
messages each process contains at some time. We say that “val(i) is the value of
process i,” or “process i contains message val(i).”

Modeling Faults and the Environment

Here, we introduce the transitions dependent upon the environment. In a fault-free
environment, processes are never faulty and so always send messages correctly. To
model non-faulty communication from process j to process k, we introduce a function
sendff : I × I × VAL → MSG that takes as arguments the indicies of sending and
receiving processes, j and k, respectively, and a process function, and it returns
the message received by process k from process j (again, ‘ff’ denotes fault-free).
In a fault-free environment, the value sent by process j is just the value process j
contains, so we let

sendff(j, k, val)
df
= val(j) .
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As for modeling fault-generating environments, we model all process faults in
terms of the messages a process sends. Abstractly, we allow all processes to receive
and compute messages correctly, but faulty processes (including processes sending
over faulty communication channels) may not communicate these messages cor-
rectly [24].

In a fault-generating environment, we take it that some processes are good (i.e.,
non-faulty) while others are faulty.6 Given our abstractions, if a process is good, then
all communication channels coming from the process are good, too. We introduce
a predicate good? to distinguish these two sets of processes. We thus define the
function send fg : I × I ×VAL → MSG as

send fg(j, k, val)
df
=

if good?(j) then sendff(j, k, val)

else bad send fg(j, k, val) ,

where the function send fg : I × I × val → MSG models the send function for a
faulty sending process (‘fg’ denotes fault-generating). The simplest means of mod-
eling this is with an uninterpreted function defined in Def. 10. We provide no def-
inition for bad send fg – when applied to its arguments, it is an undefined constant
in MSG. Particularly, bad send fg(j, k) does not necessary equal bad send fg(j, i), so
this successfully models Byzantine faults. Other faults, such as symmetric or benign
faults [29], are modeled this way, too.7

Modeling the Algorithm

We construct the fault-free specification first. To model the first round of commu-
nication in OM 1, we introduce the function updateff

0 : I ×VAL → VAL modeling a
process correctly sending its message to all other processes (the subscript denotes
the round of communication modeled). We define updateff

0 as

updateff
0 (j, val)

df
= λk. sendff(j, k, val) .

The image of updateff
0 (j, val) is a function that takes a receiver k and returns the

value set to k by j.
To model the second round of communication, we introduce the function

updateff
1 : VAL → VAL that takes a process function and updates it by model-

ing each process sending its message to every other process and then each process
computing the majority of the messages it has received. It is defined as

6For the purposes of this paper, we assume that all faults are permanent and
ignore the effects of transient faults in which faulty nodes may work again at some
point in the future.

7In this respect, the model represents a weakening of the algorithm. For example,
if a sender fails-silent, the receiver has knowledge of this and relays a constant value.
Representing this value with an uninterpreted constant belies this. Under a more
refined fault model such as the Hybrid Fault Model [29], the kinds of faulty behaviors
that senders exhibit are distinguished, and fail-silent messages would have a special
representation.
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updateff
1 (val)

df
=

λk.maj (λj. sendff(j, k, val)) .

The function maj : VAL → MSG models majority voting. A majority vote returns
the message that the majority of the processes contain, if one exists. Otherwise, a
special constant is returned. The function maj can be defined constructively by a
particular algorithm that computes the majority function (e.g., Boyer and Moore’s
very efficient MJRTY algorithm [4]), or the maj can be axiomatized so that it is
implementation-independent [26]. For our purposes, we need only introduce one
simple axiom, stated in Sect. 6.3.

Putting the two stages together, the fault-free specification of OM 1 is the recur-
sive function OM ff

1 : (I ×VAL×{0, 1}) → VAL. It takes as arguments the general’s
process index, the current set of messages the processes contain, and the current
round (either 0 or 1). It returns an updated process function modeling the output
of OM 1 for each process. Let rnd ∈ {0, 1}.

OM ff
1 (g, val , rnd)

df
=

if rnd = 0

then OM ff
1 (g, updateff

0 (g, val), rnd + 1)

else updateff
1 (val) .

Although OM ff
1 takes a process function val as an argument, the only input of

concern is that of g, the general.
Now, we provide the fault-tolerant specification. This specification is quite simi-

lar to the fault-free one. We need only to define analogous update functions allowing
faults to occur. The following functions have the same signatures as their fault-free
counterparts. Let updatefg

0 : I ×VAL → VAL be defined as

updatefg
0 (j, val)

df
= λk. send fg(j, k, val) ,

and let updatefg
1 : VAL → VAL be defined as

updatefg
1 (val)

df
=

λk.maj (λj. send fg(j, k, val)) .

We call the fault-tolerant specification OM ft
1 and define it as

OM ft
1 (g, val , rnd)

df
=

if rnd = 0

then OM ft
1 (g, updatefg

0 (g, val), rnd + 1)

else updatefg
1 (val) .

Modeling the MFA

As mentioned, the MFA constrains the fault-generating environments. The formal-
ization of MFA given in Def 13 is straightforward. We constrain the size of the sets
of the non-faulty and faulty nodes, respectively.

MFA
df
=

|{j | good?(j)}| ≥ 3 and
|{j | not good?(j)}| ≤ 1 .



12 Lee Pike

6.3 Verifying OM 1

Because we left the majority function uninterpreted, we need to state a small axiom
about its behavior. Our axiom states that if more than half the processes contain
the same message, then that message is the majority of all messages in the system.

Axiom 1 (Majority). If there exists msg ∈ MSG such that
2× |{j | val(j) = msg}| > |{j | true}|, then maj (val) = msg.

We now prove that the OM 1 algorithm satisfies Def. 9.

Theorem 2 (Fault-Tolerant Correctness). OM ft
1 (g, val , 0) satisfies fault-tolerant

correctness.

Proof. The input of OM ft
1 (g, val , 0) and OM ff

1 (g, val , 0) is val(g), the message with
which the general is initialized (for OM 1, the messages other processes are initialized
with are irrelevant). We must show that for any value of OM ft

1 (g, val , 0) allowed by
the MFA and for any l ∈ I , if good?(l), then there exists a function val ′ such that
val(g) = val ′(g), and OM ft

1 (g, val , 0)(l) = OM ff
1 (g, val ′, 0)(l).

1. First, we compute the value of OM ff
1 (g, val , 0) by definition expansion and λ-

application.
OM ff

1 (g, val , 0) = λk.maj (λj. val(g)) ,

and since every process contains the same message,

λk.maj (λj. val(g)) = λk. val(g) ,

by Ax. 1. Note that OM ff
1 (g, val , 0) computes the value of g for all processes k,

as expected.

2. Now we produce a function val ′ such that val(g) = val ′(g), and for all l ∈ I
where good?(l), OM ft

1 (g, val , 0)(l) = OM ff
1 (g, val ′, 0)(l). From Step 1, it follows

that
OM ff

1 (g, val ′, 0)(l) = val ′(g) ,

by λ-application. By definition expansion and λ-application,

OM ft
1 (g, val , 0)(l) = maj (λj. send fg(j, l, λi. send fg(g, i, val))) .

3. We consider two cases.
a) If good?(g), then from Step 2, definition expansion, and λ-application,

OM ft
1 (g, val , 0)(l) = maj

(
λj.

{
if good?(j) then val(g)

else send fg(j, l, λi. val(g))

)
.

By the MFA, at least three processes contain val(g) and no more than one
process does not. Thus,

maj

(
λj.

{
if good?(j) then val(g)

else send fg(j, l, λi. val(g))

)
= val(g) ,

by Ax. 1.
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b) If not good?(g), val ′ can be any function such that
OM ft

1 (g, val , 0)(l) = OM ff
1 (g, val ′, 0)(l), so let

val ′ = λg.maj (λj. send fg(j, k, λi. send fg(g, i, val))) .

The equality holds from Steps 1 and 2.
ut

We should note that because we abstracted faults as the inability of a process
to send messages, but allow them to receive and compute messages correctly, we
did not need to assume that good?(l) holds in Step 2. This is a consequence of our
abstraction (that simplifies proofs). Nevertheless, for the actual algorithm, we are
only concerned about the output of non-faulty processes.

The proofs that OM 1 satisfies agreement and validity are now trivial.

Theorem 3 (OM 1 Agreement). OM ff
1 (g, val , 0) satisfies Agreement.

Proof. From Step 1 of Thm. 2,

OM ff
1 (g, val , 0)(i) = val(g) = OM ff

1 (g, val , 0)(j) .

for processes i, j ∈ I . ut

Theorem 4 (OM 1 Validity). OM ff
1 (g, val , 0) satisfies Validity.

Proof. Suppose good?(g). Then for i ∈ I , OM ff
1 (g, val , 0)(i) = λk. val(g)(i) = val(g)

by Step 1 of Thm. 2. ut

Theorem 5 (Correctness). If MFA holds, then OM ft
1 (g, val , rnd) satisfies agree-

ment and validity.

Proof. Immediate from Thms. 1, 2, 3, and 4. ut

7 Conclusion

We have provided a method by which proofs of correctness for fault-tolerant algo-
rithms can be decomposed. This is in the framework of recursive function specifica-
tions. The method is demonstrated by specifying the Oral Messages(1) algorithm,
and verifying its correctness.

Hard problems do not just go away. One of the hard problems in verifying fault-
tolerant algorithms is reasoning about the nondeterminism of fault transitions. We
have traded the problem of nondeterministic execution for a set of fixed inputs (in a
fault-generating environment) to the problem of determining the appropriate inputs
for deterministic execution (in a fault-free environment).

Still, we believe the decomposition presented here allows for simpler and more
systematic proofs. By this decomposition, faults need be reasoned about explicitly
only in demonstrating fault-tolerant correctness. If this holds, faults can be ignored
in proving the algorithm satisfies its requirements. This is especially beneficial if the
requirements are numerous.
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A common challenge for new tools and techniques in formal methods is, “Does
this method scale?” [10]. Admittedly, OM 1 is a simple algorithm, and there are
relatively simple non-compositional proofs of its correctness and the correctness of
the Oral Messages algorithm for an arbitrary number of faults [17].8 It therefore may
seem as if not much is gained through this verification technique. However, OM 1 is
presented only for illustrative purposes. We believe (but have not yet experimentally
verified) that proofs of correctness for complex algorithms stand to benefit even more
from the technique.

Finally, a fault-free specification disentangles the specification of an algorithm
and the specification of the environment in which it executes. A fault-free specifica-
tion is one from which an implementation of the algorithm can possibly be derived.
In fact, an implementation can be formally derived using a design algebra [3, 9]. This
allows for potentially more formal connections between the fault-tolerant specifica-
tion of an algorithm, about which correctness conditions are proved to hold, and its
fault-free specification, which ignores the effects of the environment and is closer to
a hardware or software implementation. The upshot is greater assurance of correct
design for safety-critical systems.
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